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Adaptive box-assisted algorithm for correlation-dimension estimation

Angelo Corana
Institute for Electronic Circuits, National Research Council, Via De Marini 6, 16149 Genova, Italy

~Received 27 October 1999; revised manuscript received 16 June 2000!

An algorithm is presented for efficient computation of the correlation dimension from a time series. The
main feature of the algorithm is the use of a variable number of points in order to keep the number of close
pairs approximately constant at the various scales and at the various embedding dimensions. The procedure
consists of a number of steps with decreasing cutoff distance; at each step only neighboring pairs are consid-
ered, using a box-assisted approach. The algorithm is tested by performing some trials on time series from
known model attractors. With respect to the standard algorithm, the one proposed here yields more uniform
precision in the various correlation integral values, improving the statistics at the smallest distances. Moreover,
it gives a substantial reduction in computation time, allowing execution of trials with a very large number of
points, and exploitation of shorter length scales. The algorithm can be easily adapted for the computation of
q-order generalized dimensions.

PACS number~s!: 05.45.Tp, 07.05.Kf, 89.80.1h
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I. INTRODUCTION

The correlation dimension (D2), obtained through the
computation of the correlation integral, has been since
introduction in 1983@1,2# a widely used parameter in non
linear time series analysis. The procedure needed for the
timation is simple, since it consists in computing and his
gramming distances within a set of points embedded inRm,
but there are a number of aspects that must be consider
order to obtain a reliable estimate@3#.

Errors can be divided into two classes@4#: statistical er-
rors, which become more important at the smallest sca
and systematic errors~e.g., the edge effects!. Related issues
are the influence of the number of points, the influence
noise, the need for reliability indices, and the need for fu
automatic procedures.

The difficulty of obtaining a goodD2 estimate increase
as theD2 value itself increases. Specifically, most autho
believe that it is essentially impossible to estimateD2 in the
case of high-dimensional systems~i.e., when D2>5 – 6).
Another important aspect is that the naive algorithm, wh
takes into account all distances, is computationally heavy
fact, the computation of the correlation integral from a set
N points is O(N2) for each embedding dimensionm, and
several correlation integrals, for increasingm values, must be
evaluated.

The first and more straightforward improvement is t
computation of the correlation integrals for all the embe
dings m<mmax as a by-product of the computation withm
5mmax @5,6#. In addition, the basic version has been op
mized for various computer architectures, including sup
scalar~pipelined! processors@6,7# and parallel systems@8,9#.
Another way to reduce the time complexity of the algorith
is to compute not all distances but only those less tha
given cutoff value using various techniques for the f
search of neighboring points, likem-dimensional trees@10#
or meshes of boxes@11,5#. However, such algorithms do no
yield the complete correlation integral, which can be use
when dealing with experimental signals. Moreover, in so
cases the choice of the cutoff distance is not straightforw
In any case, with the usual approach the correlation integ
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~for all the length scales or for those less than the cu
distance! are computed with a fixed number of points, so t
statistics worsen at the shortest scales.

To obtain the whole correlation integral keeping comp
tation time low, Theiler proposed a double computation: o
using the whole point set with a small cutoff distance a
one using a small subset of points and considering all
tances@11#. In this work we propose an adaptive box-assis
~ABA ! algorithm for fast computation of the correlation in
tegral, which is performed using a different number of poin
for each length scale and for each embeddingm. The proce-
dure consists of a number of steps, with a decreasing cu
distance, starting from the maximum value and reaching
minimum scale at which we intend to operate. At each s
the box-assisted approach allows an efficient search of
didate pairs for distance computation. As the search beco
more local and therefore faster, the number of points
creases to assure good statistics in any situation.

An estimation of the computational cost is given in term
of the number of candidate pairs for the various values of
cutoff distance. Some trials have been performed on t
series from known model attractors to compare the propo
algorithm with the standard ones, taking into account b
the accuracy of correlation integral values and the comp
tional cost.

II. THE CORRELATION DIMENSION

A. The basic procedure

Let us consider a set ofN points (xi ,i 51, . . . ,N), recon-
structed inRm with the time-delay method@2,6# from a sca-
lar time series. The correlation integral is defined as

Cm~e!5 lim
N→`

Cm~N,e!, ~1!

where

Cm~N,e!5
Nm~N,e!

Nt~N!
, ~2!
7872 ©2000 The American Physical Society
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Nm~N,e!5$no. of pairs~ i , j !,i . j :ixi2xj i,e% ~3!

and

Nt~N!5
N~N21!

2
5$total number of pairs%. ~4!

i•i denotes a norm inRm. Cm(e) gives the probability of a
randomly chosen pair~with respect to the natural measure
the attractor! in them-dimensional space having a separati
less thane.

It is advisable to consider in the evaluation of the cor
lation integral only pairs that are close in space but no
time @4,3#. It suffices to requirei 2 j .h in Eq. ~3!, h being a
suitable integer.1, and to modifyNt(N) accordingly.

Provided thatm is sufficiently high to allow a good recon
struction of the attractor, ife→0, Cm(e) varies as a power o
e, the exponent being the correlation dimension@1,2#,

Cm~e!}eD2. ~5!

HavingN points available, we compute the sample cor
lation integralCm(N,e), usually by chosing a suitable num
ber of e values and building the cumulative histogram
distances between all pairs of points.Cm(N,e) increases
monotonically from 2/N(N21) up to the saturation value 1
The error with respect to the ‘‘true’’ correlation integral in
creases ase decreases andm increases, since the statistic
worsen@i.e., Nm(N,e) becomes too low#.

Since with a limited data set we cannot explore very sm
scales, the usual procedure searches for a range of inte
diatee valuese8<e<e9 ~scaling region! for which relation
~5! approximately holds. logCm(N,e) versus loge is plotted
for increasing embeddings~e.g., from 2 up tommax) and the
slope ~smoothed local derivative! in the scaling region is
fitted. If the slope increases withm up to a saturation value
~plateau!, this value is assumed as the estimation of the t
D2 @12#. Various criteria can be employed to extract the b
D2 estimate and its degree of reliability from the log-log p
@13,14#.

The scaling behavior disappears at short values ofe ow-
ing to the poor statistics and to the noise that may affect
data, and at high values~saturation region! owing to the edge
effects, i.e., the effects of the finite size and global shape
the attractor. The pattern of logCm(e) versus loge is some-
times more involved, owing, for example, to the presence
multiple scaling regions.

When m increases interpoint distances also increase.
e8 increases, owing to depopulation at the shortest sca
and e9 decreases, since the boundary effects become m
important, resulting in a shorter and shorter scaling reg
@15,16#. This also accounts for failure inD2 estimation for
high-dimensional systems@17,18#.

The condition of having a quite well-defined scaling r
gion of sufficient width~e.g., one or half a decade on th
logarithmic scale! yields the minimum number of pointsN,
which increases with theD2 value itself, needed for a reli
able computation@19#. To improve the statistics at the sma
est scales we are forced to use a high number of points,
in this way computation time increases and for the highee
values we process more data than necessary.
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B. Methods with cutoff distance

These methods are based on the observation that it is
less to compute all interpoint distances, sinceD2 is obtained
in the scaling region, i.e., for distances less thane9 @11,5#.
They consider only interpoint distances less than a cu
valueec , which must be chosen small enough to achiev
significant reduction in computation time, but well abovee8.
Neighboring points are found in an efficient way using
additional data structure~e.g., anm-dimensional tree or mesh
of boxes!.

These methods are interesting, but present some d
backs: ~1! only a portion of the log-log plot fore<ec is
obtained, while in some circumstances the whole log-log p
gives us more insight into the dynamics@20,7#; ~2! the proper
choice of ec requires somea priori information about the
attractor or must be performed by trials;~3! if the time series
is noisy, we cannot choose too small a cutoffec , thus lim-
iting the efficacy of the method. For these reasons most
searchers continue to prefer the naive algorithm, which co
putes all distances.

In @11# it is suggested to perform two separate compu
tions: the first with the whole set ofN points and a small
cutoff distanceec ; the second to estimate the correlatio
integral fore.ec , using a lower number of points~e.g.,AN!
and computing all distances. The whole correlation integ
is then obtained by joining the two portions.

We point out that using cutoff methods, for a givenN, the
accuracy of the various valuesCm(N,e) decreases ase de-
creases andm increases, just as in the standard method. T
also happens in each correlation integral portion obtai
with the two-computation scheme suggested in@11#.

III. THE ADAPTIVE BOX-ASSISTED ALGORITHM

A. The proposed approach

Supposing we can consider, for eache andm, Nm(N,e)
as a binomial (n,p) random variable withn5Nt(N) ~num-
ber of trials! and p5Cm(e) ~probability that the distance
between a randomly chosen pair is less thane), we obtain,
after Nt trials, the estimatep(n) of p,

p~n!5Cm~N,e!5
Nm~N,e!

Nt~N!
, ~6!

with an actual errorDp5up(n)2pu and a standard error

sp5S p~12p!

n D 1/2

. ~7!

Since in order to estimateD2 we plot logCm(e) versus
loge, and since for smallDp

log~p6Dp!. log p6
Dp

p
, ~8!

we see that the error on logCm(e) is the relative error on
Cm(e).

Equation~7! shows that with the standard methods, whi
use a constant number of trials, the relative standard e
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sp /p increases asp decreases, i.e., as we move towa
smallere values and higher embeddings. On the contrary,
must have

n>
12p

«2p
~9!

to keepsp /p less than or equal to a prefixed value«, asp
varies. Observing that (12p)/p,1/p, setting

Nth5
1

«2
, ~10!

and getting back to the original quantities, we see that
above condition is satisfied if

Nt~N!Cm~e!5E„Nm~N,e!…5const5Nth , ~11!

i.e., if the number of trials is inversely proportional toCm ,
so that the expected number of successesNm is kept con-
stant. SinceNt(N).N2/2, Eq. ~11! yields

N.S 2Nth

Cm~e! D
1/2

, ~12!

showing how the number of points is expected to vary w
Cm(e) if we require that E„Nm(N,e)…5Nth . Since the
variation ofCm(e) with e is very high@see Eq.~5!#, it fol-
lows thatNt(N) or equivalentlyN must vary greatly in order
to satisfy Eqs.~11! and ~12!.

On the basis of the above considerations, we propos
different procedure, in which eachCm(e) element is com-
puted with a different number of points in order to ke
Nm(N,e) approximately equal toNth , ensuring good statis
tics for eache andm. In this way we obtain a quite uniform
relative precision for all theCm(e) values. TheNth value
determines the accuracy level.

B. Algorithm description

This procedure can be implemented in a very effici
manner using an adaptive box-assisted algorithm with
number of decreasing cutoff distances, which coincide w
the considerede values. In the following we describe th
algorithm, whose pseudocode is reported in the Appen
We chooseNmax5 the maximum number of available point
mmax5 the maximum embedding dimension;Nth5 the
threshold value for the number of pairsNm(N,e) @see Eq.
~11!#; and the sequence ofe values ase l5a2 l , 1,a<2,
l 50, . . . ,L21. emin5a2(L21) is the minimum value ofe. L
gives the number of length scales considered;a andL must
be suitably chosen in order to obtain a good resolution an
reasonableemin value. To allow maximum generality, w
also accept noninteger values ofa, resulting in noninteger
e/emin ratios. The number of correlation integral values
compute isnel5L(mmax21).

Point coordinates are normalized to the unit interval a
preprocessed by dividing them byemin . To save memory we
use the time series values directly, with the corresponde
e

e

a

t
a
h

x.

a

d

e

xiv5xi 1(v21)u , i 51, . . . ,Nmax, v51, . . .m, ~13!

where the integeru (>1) gives the time delay. Distances a
computed using the maximum norm.

1. The mesh of boxes

As in @5#, we use anm8-dimensional mesh of boxes an
linked lists for a fast search of neighboring points. Typica
m852; in some circumstances, especially ifmmax is very
high, a greater value~e.g.,m853) can speed up the compu
tation but causes the loss ofCm for m,m8 and an increased
demand on memory. For this work we chosem852.

The two-dimensional~2D! subspace is divided into non
overlapped boxes of edgeemin ; there arenb51/emin boxes
along each side, andM5nb

25a2(L21) is the total number of
boxes. The arrayB, of sizeM, corresponds to the mesh o
boxes, and is used to build in the arrayLL the linked lists of
indices of points falling into the same box. Ifemin is very
small, we can save memory by employing the wrapping@5#.

At the beginning, all the elements of bothB andLL are
set to zero. During the procedure, each nonempty locatio
B points to the head of the corresponding linked list.

2. Computing and histogramming distances at the kth step

The algorithm comprisesL steps. At the generickth step
(k50, . . . ,L21) the cutoff distance isek5a2k and the lo-
cality of the search is expressed by

rk5CeilS ek

emin
D , ~14!

where Ceil(x) denotes the smallest integer greater than
equal tox. In the first step (k50 ande051) no distances are
discarded.

For every new pointxi , picked out randomly among th
set ofNmax points, the proper location ofB is addressed with
the integer parts of the first two coordinates. The linked li
corresponding to the boxes in the square of side (2rk11)2,
centered around the box containing pointi, are sequentially
scanned; the pairs formed by the current point and previ
points in these linked lists are considered as candidate p
(Nc) for distance computation, and a subset of them
distance,ek in the R2 subspace~see Fig. 1!.

For these points the distancesd(m) less thanek ~actually
less thanek /emin owing to preprocessing of point coord
nates! are recursively computed for the various embeddin
and binned in the usual way, simultaneously updating
histograms of distances@H(m,l ),l 5k, . . . ,L21#. Pre-
cisely,H(m,l ) contains the number of pairs with

a2 l 21

emin
,d(m)<

a2 l

emin
. ~15!

Then the current point is inserted at the beginning of its
and the location ofB is updated.

3. Testing phase

Every Ntest points we compute the cumulative histogram
@Hc(m,l ),l 5k, . . . ,L21# and we test the various elemen
corresponding to not-yet-computed correlation integral v
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ues to find the ones that have reached theNth threshold. For
such values the correlation integral is computed as

C~m,l !5
Hc~m,l !

Nt~Nm,l !
, ~16!

Nm,l being the number of points processed so far; this va
is saved innp(m,l ). We note thatHc(m,l ) contains the
quantity Nm(Nm,l ,e l) and C(m,l ) corresponds to
Cm(Nm,l ,e l).

The Hc(m,l ) values grow more slowly asm and l in-
crease, according to the correlation integral values. He
the C(m,l ) values are computed in decreasing order.

In order to limit the testing overhead, various strateg
can be adopted to vary the test step during computation
accordance with Eq.~12!, we find it useful to increaseNtest
as 1/(Cmin)

s, Cmin being the smallestC(m,l ) computed so
far, ands< 1

2 .

4. Cutoff distance reduction

When all theC(m,k) for the currentk are computed, we
begin the next step (k←k11), reducing the current cutof

FIG. 1. Example withe52emin , i.e., r52 and 2r1155. The
small boxes have sideemin ; points in the dashed square of side 4e
are the close points~maximum norm! to pointx in the 2D subspace
points in the square of 535 boxes form with pointx the candidate
pairs.
e

e,

s
In

value by dividing it bya. Correspondingly, the square o
boxes ~Fig. 1! for searching for the neighboring points
reduced. The columns ofH from 0 to k21, which corre-
spond to distances greater than the currentek , are updated
no further.

Let Nk be the number of points processed when all
values in thekth column ofC have been computed. For a
the C(m,l ) values computed during stepk, we haveNk21

,Nm,l<Nk .
As the algorithm proceeds, the number of points

creases, but the search becomes more local and ther
faster. The box-assisted approach ensures an efficient se
of neighboring points at each step.

5. Termination phase

The algorithm proceeds toward the smalleste value (emin)
and terminates when allC values have been computed wi
the required statisticsNth , or when all points have bee
processed. In this latter case the remainingC values are in
any case computed with the available statistics, and the
responding elements innp are set to 1.

The D2 can then be estimated using the same techniq
that apply with the standard procedure~manual or automatic
determination of the scaling region, best fitting of slope
the scaling region, test of reliability, etc.!. We can choose to
use all the availableC values, or only those computed th
fulfill the threshold criterion.

C. ABA vs BA and BA-2 algorithms

We point out that the ABA algorithm is similar in som
aspects to the box-assisted~BA! algorithm presented in@5#,
but there are important differences, as shown in Table I.

For comparison we also implemented, using the BA alg
rithm, a two-computation scheme~BA-2 algorithm! derived
from the idea proposed in@11#. In the first phase we proces
N0 (!N) points withe051 ~no distances are discarded! and
we find the minimumec for the second phase as the min
mum e value for which allCm(e) have been evaluated. I
the second phase we process the whole point set with a
off distancee1>ec ~of course, a largere1 improves accuracy
but increases computation time!. This procedure assures th
the whole correlation integral is obtained.
TABLE I. Comparison of the proposed algorithm~ABA ! with the algorithm presented in@5# ~BA!; m8
52 and the maximum norm is used. Corr. Int. is the correlation integral.

ABA algorithm BA algorithm

L cutoff distances one cutoff distance (ec)
(ek5a2k,k50, . . . ,L21)
decreasing from 1 up toemin

coordinates of points are divided byemin coordinates of points are divided byec

all Corr. Int. values are computed only Corr. Int. values fore<ec are computed
at thekth step, candidate pairs are searched candidate pairs are searched

in the @2 Ceil(ek /emin)11]2 neighboring boxes; in the (211)2 neighboring boxes
the search becomes more local ask increases

N is variable N is fixed
Nm(N,e) is approximately constant Nm(N,e) is variable
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D. ABA algorithm and the fixed-mass approach

In the ABA algorithm we require the number of neighbo
ing pairsNm(N,e) to remain approximately constant at th
various scales and at the various embedding dimensi
Therefore the ABA algorithm presents some analogies w
the fixed-mass approach@21#, proposed for the computatio
of generalized fractal dimensions, and based on the sca
of the sizee ~averaged over a set of reference points! of a
neighborhood containingK points, as a function of the tota
number of points. Indeed, both methods rely on the relati
ship between the number of pointsN and the neighborhood
size e, when the number of neighboring points~or pairs in
the case ofD2) is kept constant. However, in the ABA a
gorithm the independent variable ise, and for eache we find
the minimum number of pointsN needed to haveNth close
pairs. In the fixed-mass method the independent variab
N, and we find the average distancee to theK nearest neigh-
bor asN varies. Also, the implementation is different, sin
the ABA algorithm is a correlation integral algorithm, a
though box assisted and modified to manage a variable n
ber of points, whereas the fixed-mass algorithm is aK near-
est neighbor algorithm.

E. Using the algorithm

The proposed algorithm requires two input paramete
namely,Nmax and Nth ~the minimum number of pairs with
distance less thane), whereas the standard methods requ
N only. The ABA algorithm must be used withNth,Nt

(Nmax). It yields results that are essentially identical to tho
of the standard method withN5Nmax, but it saves comput-
ing time since for eache value it uses only the minimum
number of points needed to achieve the required statis
The computation time and the precision of the results ob
ously increase withNth ~typical values are 13103– 1
3107).

The algorithm makes it possible to run trials with a ve
high number of points~i.e., Nmax>13106), which cannot be
carried out with the standard method since computation t
would be too high. In this way we can reach lower scal
resulting in wider and flatter scaling regions.

If Nmmax
(Nmax,emin).Nth all C elements fulfill the thresh-

old criterion, not all the available points are used, and res
depend only onNth and not onNmax. Otherwise, at the
smallest scales the whole set of points is used, possibly w
out reaching the thresholdNth for someHc(m,l ) values.

If Nth>Nt(Nmax) the algorithm behaves like the standa
one and allC elements are computed using the whole se
points. It is obviously useless to employ the algorithm in t
way since it performs worse than the standard method ow
to the overhead arising from managing linked lists and te
ing the cumulative histogram.

F. Memory demand and computational cost

The proposed algorithm requires, like the BA algorith
@5#, an additional storage ofNmax words for the linked lists
and of nb

2 words for the arrayB. Furthermore, (mmax21)L
words are needed for the arraynp . The total memory de-
mand~in words! is
s.
h

ng

-

is

m-

s,

e

e

s.
i-

e
,

ts

h-

f
s
g
t-

Wtot.2Nmax1nb
214~mmax21!L, ~17!

which is roughly twice that of the standard algorithm a
about the same as the BA algorithm.

A precise computational analysis of the algorithm is qu
involved, since the computational complexity depends on
kind of time series, on theD2 value itself, and on a numbe
of other parameters (Nmax,mmax,Nth ,L,a). A fairly rough
evaluation of the computational cost can be done in term
the ratio between the number of pairs examined~candidate
pairs! Nc and the total number of pairsNt . At the kth step
this ratio is the ratio between the neighboring boxes of e
point and the total number of boxes

Rk5minS ~2rk11!2

M
,1D . ~18!

The incremental number of pairs resulting in thekth step,
when the number of points increases fromNk21 to Nk , is
(N21[0)

DNk5
~Nk2Nk21!~Nk2Nk2121!

2

1~Nk2Nk21!Nk21 , k50, . . . ,L21. ~19!

We can therefore express the total number of candidate p
as

Nc5 (
k50

L21

RkDNk , ~20!

and the ratio between the number of candidate pairs and
total number of pairs is

Nc

Nt~NL21!
5

(
k50

L21

RkDNk

NL21~NL2121!/2
. ~21!

This ratio, unity in the standard algorithm, gives us an in
cation of the reduction in the computational cost. TheNk
values can be approximately obtained from Eq.~12!,

Nk5S 2Nth

Cmmax
~ek!

D 1/2

. ~22!

So theDNk quantities~and thereforeNc) are proportional to
Nth and increase if theCmmax

(ek) values decrease~i.e., if the

D2 is higher!. If the total number of points is insufficient to
reachNm(Nmax,ek)5Nth for k.k8, the summation in Eq.
~20! reduces to the firstk8 terms.

It is interesting to consider also the BA-2 algorithm, f
which the ratio between the number of candidate pairs
the total number of pairs can be expressed as a partic
case of Eq.~21! with L52,

Nc

Nt~N!
5

R1DN11DN0

N~N21!/2
. ~23!
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TABLE II. Comparison of results obtained with the proposed algorithm~ABA ! and with the standard one
In all trials a51.055, L5128, andmmax514. #el @<L(mmax21)51664# denotes the number of evaluate
values of the correlation integral. Numbers in square brackets denote powers of 10.

System Nmax Algorithm Nth TCPU ~s! #el errav errmax

Lorenz 200 000 std 34 081 1664 Ref. Ref.
10 000 std 89 1664 3.1@22# 0.16
50 000 std 2283 1664 1.2@22# 8.2@22#

200 000 ABA 1@2# 6 1664 4.7@22# 0.18
200 000 ABA 1@3# 15 1664 2.2@22# 9.3@22#

200 000 ABA 1@4# 43 1664 6.7@23# 3.4@22#

200 000 ABA 1@5# 116 1664 3.2@23# 1.9@22#

200 000 ABA 1@6# 403 1664 1.7@23# 9.9@23#

200 000 ABA 1@7# 1752 1664 7.8@24# 7.3@23#

2-Lorenz 200 000 std 33 443 1589 Ref. Ref.
10 000 std 84 1322 0.12 1.14
50 000 std 2107 1527 4.2@22# 1.2

200 000 ABA 1@2# 63 1589 2.8@22# 0.15
200 000 ABA 1@3# 124 1589 1.1@22# 8.1@22#

200 000 ABA 1@4# 309 1589 4.9@23# 2.6@22#

200 000 ABA 1@5# 839 1589 2.0@23# 1.5@22#

200 000 ABA 1@6# 2332 1589 1.1@23# 1.1@22#

200 000 ABA 1@7# 6408 1589 5.6@24# 7.1@23#

200 000 ABA 1@8# 14 584 1589 2.4@24# 3.0@23#

2 000 000 ABA 1@7# 86 966 1664
3-torus 200 000 std 32 487 1603 Ref. Ref.

10 000 std 83 1456 0.10 0.93
50 000 std 2097 1575 6.4@22# 0.9

200 000 ABA 1@2# 38 1603 2.4@22# 0.12
200 000 ABA 1@3# 46 1603 1.0@22# 5.7@22#

200 000 ABA 1@4# 79 1603 3.7@23# 2.1@22#

200 000 ABA 1@5# 186 1603 1.5@23# 1.1@22#

200 000 ABA 1@6# 588 1603 8.7@24# 6.0@23#

200 000 ABA 1@7# 2200 1603 2.2@24# 1.9@23#
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Since the ABA algorithm uses the minimum number
points needed to obtain the required accuracy, it is expe
to outperform the BA-2 algorithm, which can be viewed
an approximation of the ABA algorithm with only one cuto
distance reduction.

IV. EXPERIMENT RESULTS

To test the algorithm, we performed some trials us
time series from known attractors. We chosea51.055 and
L5128, i.e.,emin50.001, which give 128 points uniformly
distributed over three decades. We fixedmmax514. All trials
were carried out on aDIGITAL personal workstation Alpha
AU 433 ~clock speed 433 MHz!.

We considered the following time series:~i! The x vari-
able from the Lorenz system, with parameterss510, R
528, b58/3 (D252.06).~ii ! A time series obtained by add
ing two time series (x variable! from two different Lorenz
systems~2-Lorenz in Table II!: the first with s510, R
528, b58/3 and the second withs540, R516, b54. The
resulting time series is expected to giveD2.4.12. ~iii ! A
three-torus obtained by summing up three sinusoids w
mutually incommensurable frequencies. In all cases we
formed a reference trial with the standard procedure
f
ed

g

h
r-
d

N5200 000 points, whose results are assumed as refer
values.

The results are presented in Table II. #el is the num
(<nel) of correlation integral values evaluated in each tri
For each trial we consider the CPU time~in seconds! needed
for the computation, the average absolute error errav, and the
maximum absolute error errmax between the #el values o
logC(m,e) and the reference values. We see that the A
algorithm is considerably faster than the standard one.
error reduces asNth increases, eventually becoming neg
gible. #el increases, as expected, with the number of po
and, for a givenNmax, the ABA algorithm allows the com-
putation of the same number ofC values as the standar
algorithm with an accuracy that depends onNth .

The 2-Lorenz time series is analyzed in more detail
Fig. 2, where some plots of the derivative of log10Cm(e) vs
log10e are compared. In this caseN550 000 is the minimum
number of points needed to obtain a quite well-defined s
ing region. However, the scaling range is short and there
high statistical errors at the smallest scales. The situatio
much better withN5200 000, but the standard algorithm
requires about 9 h of CPUtime. The ABA algorithm gives us
the same results within a negligible error in a fraction of t



7878 PRE 62ANGELO CORANA
FIG. 2. Examples of plots of the derivative of log10C(m,e) vs log10e for the 2-Lorenz time series (m52,14 step 2!: ~a! standard
algorithm, N550 000, TCPU52107 s; ~b! standard algorithm,N5200 000, TCPU533 443 s;~c! ABA algorithm, N5200 000, Nth51
3107, TCPU56408 s;~d! ABA algorithm, N52 000 000,Nth513107, TCPU586 966 s.
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CPU time. Figure 2~d! shows an example of use of the alg
rithm with a very high number of points: the scaling regi
remains flat up to log10e.22.6. The CPU time is about 2
h, but in this case the standard algorithm would require
days.

Table III shows some results obtained with the BA-2
gorithm. N0 is the subset of points used in phase 1; as
pected the number ofC elements that we can compute with
fixed N0 decreases if the system complexity increases and
8

-
-

as

a consequence, we must increase the cutoff distancee1 in
phase 2.

Although the BA-2 algorithm greatly reduces computin
time, giving quite good results, we see that the ABA alg
rithm in general performs better. In fact, comparing tria
with similar CPU time~see Tables II and III and Fig. 3
which refers to the 2-Lorenz system!, we see that the error
obtained with the ABA algorithm are lower. This occu
both for average errors and, to a larger extent, for maxim
kets

TABLE III. Results obtained with the BA-2 algorithm. In all trialsa51.055,L5128, andmmax514. N0

is the number of points used in phase 1;e1 is the cutoff distance in phase 2. Numbers in square brac
denote powers of 10.

System N N0 e1 TCPU ~s! #el errav errmax

Lorenz 200 000 1000 0.014 136 1664 7.0@23# 0.11
200 000 5000 0.003 37 1664 1.2@22# 0.13
200 000 20 000 0.002 467 1664 3.2@23# 1.5@22#

2-Lorenz 200 000 1000 0.070 1698 1589 5.8@23# 0.17
200 000 5000 0.040 626 1589 4.4@23# 0.10
200 000 20 000 0.014 502 1589 1.4@22# 0.41

3-torus 200 000 1000 0.040 370 1603 1.8@22# 0.28
200 000 5000 0.018 102 1603 8.2@23# 0.10
200 000 20 000 0.006 433 1603 4.0@22# 0.42
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errors. In particular, the ABA algorithm gives a more un
form accuracy and wider and flatter scaling regions~see Fig.
3!.

Furthermore, the ABA algorithm is fully adaptive
whereas with the BA-2 algorithm the proper choi
of N0 requires somea priori information about the
system under investigation.

FIG. 3. Plots of the derivative of log10C(m,e) vs log10e for the
2-Lorenz time series (N5200 000, m52,14 step 2!: ~a! ABA
algorithm, Nth513105, TCPU5839 s; ~b! BA-2 algorithm,
N055000, e150.040, TCPU5626 s; ~c! BA-2 algorithm,
N0520 000,e150.014,TCPU5502 s.
V. CONCLUSIONS

The proposed algorithm compares favorably with t
standard procedure. With a suitable choice of the param
Nth , we achieve a substantial reduction in computation tim
obtaining essentially the same correlation integral values
in the standard procedure. The algorithm also outperfo
the two-computation scheme outlined in@11#.

A major feature of the algorithm is that it is fully adaptiv
to the system under consideration, since it does not req
any a priori knowledge. Moreover, for eache value it uses
the minimum number of points necessary to obtain the
quired statistics. So, for a given accuracy, the computa
time increases with the complexity of the system~see, for
example, the Lorenz and 2-Lorenz time series in Table!.
Varying Nth , we can choose the degree of accuracy of
sults and the related computation time. For intermediate
ues ofN and using quite a low thresholdNth , we can reach
very fast processing.

Obviously, if we lowerNth the execution becomes faste
but the accuracy of results is reduced. In some circumstan
a trial with a very low value ofNth may be useful for ob-
taining a fairly rough but very fast estimation of the corre

FIG. 4. The main procedureCORR_INT.
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tion integral ~and therefore of the correlation dimension!,
which can be refined later, if necessary.

The algorithm is suitable for carrying out trials with
very high number of points~in our trials we used up to 15
million points!. Of course, even if the proposed method
lows the efficient computation of correlation integrals,
does not solve all the problems connected to the estima
of the correlation dimension, especially in the case
medium-high dimensions~e.g.,D2>5). These intrinsic dif-
ficulties are mainly due to a very high depopulation at sm
scales and higher embeddings, so that a huge numbe
points is needed to achieve sufficient statistics. Such a h
number of points is not normally available in experimen
situations.

In order to increase the speed of the algorithm, especi
when dealing with ‘‘difficult’’ time series, we can slightly
lower the thresholdNth for the smalleste values.

With a few modifications, i.e., introducing a convergen
test for each correlation integral value, the proposed met
can be used as a tool to perform experimental investiga
of the convergence behavior of the correlation integral fo
given system, particularly when a very high number
points is available. The algorithm can easily be adapted
the computation of the individual correlation integral wi
respect to a given reference point, and therefore it can
used to compute the pointwise dimension and theq-order
generalized dimensions.

APPENDIX: PSEUDOCODE OF THE ALGORITHM

The algorithm comprises the main procedureCORR_INT

~Fig. 4! and the proceduresDIST, which computes distance

FIG. 5. Distance computation and histogram updating.
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and updates the histograms~Fig. 5!, andCHECK, which com-
putes the correlation integral elements that fulfill the thre
old Nth and reduces the cutoff distance if appropriate~Fig.
6!. e andr denote the current values ofek andrk .

The arrays used areX(1:Nmax) with the time series,
H(2:mmax,0:L21) for the histogram,C(2:mmax,0:L21)
for the correlation integral,B(0:nb21,0:nb21) with the
mesh of boxes,LL(1:Nmax) where the linked lists are built
and np(2:mmax,0:L21) to check if theC elements have
been computed and to store the number of points at wh
they are computed. Moreover, the procedureCHECK uses the
local array Hc(2:mmax,0:L21) for the cumulative histo-
gram.

The computer program, inFORTRAN language, is available
to those who request it.

FIG. 6. The procedureCHECK computes the correlation integra
elements that satisfy the thresholdNth .
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