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Adaptive box-assisted algorithm for correlation-dimension estimation
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An algorithm is presented for efficient computation of the correlation dimension from a time series. The
main feature of the algorithm is the use of a variable number of points in order to keep the number of close
pairs approximately constant at the various scales and at the various embedding dimensions. The procedure
consists of a number of steps with decreasing cutoff distance; at each step only neighboring pairs are consid-
ered, using a box-assisted approach. The algorithm is tested by performing some trials on time series from
known model attractors. With respect to the standard algorithm, the one proposed here yields more uniform
precision in the various correlation integral values, improving the statistics at the smallest distances. Moreover,
it gives a substantial reduction in computation time, allowing execution of trials with a very large number of
points, and exploitation of shorter length scales. The algorithm can be easily adapted for the computation of
g-order generalized dimensions.

PACS numbegps): 05.45.Tp, 07.05.Kf, 89.86:h

I. INTRODUCTION (for all the length scales or for those less than the cutoff
distance are computed with a fixed number of points, so the
The correlation dimensionDY,), obtained through the statistics worsen at the shortest scales.
computation of the correlation integral, has been since its To obtain the whole correlation integral keeping compu-
introduction in 1983 1,2] a widely used parameter in non- tation time low, Theiler proposed a double computation: one
linear time series analysis. The procedure needed for the egsing the whole point set with a small cutoff distance and
timation is simple, since it consists in computing and histo-one using a small subset of points and considering all dis-
gramming distances within a set of points embeddeRTn  tanceq11]. In this work we propose an adaptive box-assisted
but there are a number of aspects that must be considered (ABA) algorithm for fast computation of the correlation in-
order to obtain a reliable estimafta]. tegral, which is performed using a different number of points
Errors can be divided into two classpy: statistical er- for each length scale and for each embeddmdhe proce-
rors, which become more important at the smallest scaleslure consists of a number of steps, with a decreasing cutoff
and systematic error®.g., the edge effedtsRelated issues distance, starting from the maximum value and reaching the
are the influence of the number of points, the influence oMinimum scale at which we intend to operate. At each step
noise, the need for reliability indices, and the need for fullythe box-assisted approach allows an efficient search of can-
automatic procedures. didate pairs for distance computation. As the search becomes
The difficulty of obtaining a goodD, estimate increases More local and therefore faster, the number of points in-
as theD, value itself increases. Specifically, most authorscreases to assure good statistics in any situation.
believe that it is essentially impossible to estimBtein the An estimation of the computational cost is given in terms
case of high-dimensional systentse., whenD,=5-6). of the number of candidate pairs for the various values of the
Another important aspect is that the naive algorithm, whichcutoff distance. Some trials have been performed on time
takes into account all distances, is computationally heavy. Ii§€ries from known model attractors to compare the proposed
fact, the computation of the correlation integral from a set of2lgorithm with the standard ones, taking into account both
N points is O(N?) for each embedding dimensian, and the accuracy of correlation integral values and the computa-
several correlation integrals, for increasimyalues, must be  tional cost.

evaluated.

The first and more straightforward improvement is the Il. THE CORRELATION DIMENSION
computation of the correlation integrals for all the embed-
dingsm=m,,,, as a by-product of the computation with A. The basic procedure
= Mgy [5,6]. In addition, the basic version has been opti- | et us consider a set ®f points (;,i=1, ... N), recon-
mized for various computer architectures, including superstructed inR™ with the time-delay methof®,6] from a sca-
scalar(pipelined processor$6,7] and parallel systen(8,9].  |ar time series. The correlation integral is defined as
Another way to reduce the time complexity of the algorithm
is to compute not all distances but only those less than a Cn(e)=lim C(N,e), (1)
given cutoff value using various techniques for the fast N

search of neighboring points, like-dimensional tree$10]

or meshes of boxgd 1,5]. However, such algorithms do not \ynere

yield the complete correlation integral, which can be useful

when dealing with experimental signals. Moreover, in some

cases the choice of the cutoff distance is not straightforward. C.(N,e)= NN, €) %)
In any case, with the usual approach the correlation integrals me Ni(N) 7
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Nim(N,€)={no. of pairg(i,j),i >j3||Xi _Xj||< e (3 B. Methods with cutoff distance
These methods are based on the observation that it is use-
less to compute all interpoint distances, sillceis obtained
in the scaling region, i.e., for distances less tkdr{11,5].
(4) They consider only interpoint distances less than a cutoff
value €., which must be chosen small enough to achieve a
) ) . significant reduction in computation time, but well abave
Il denotes a norm iR™. Cr(¢) gives the probability of a Neighboring points are found in an efficient way using an
randomly chosen paimwith respect to the natural measure of 4qgitional data structure.g., amm-dimensional tree or mesh
the attractorin the m-dimensional space having a separation ¢ boxes.

less thane. o _ These methods are interesting, but present some draw-
_It is advisable to Co_n5|der in the evaIL_Jatlon of the ColTe-packs: (1) only a portion of the log-log plot fore<e, is
lation integral only pairs that are close in space but not ingptained, while in some circumstances the whole log-log plot
time[4,3]. It suffices to requiré—j>h in Eq.(3), hbeinga  gives us more insight into the dynami@0,7]; (2) the proper
suitable integer-1, and to modify\;(N) accordingly. choice of . requires some priori information about the
Provided thamis sufficiently high to allow a good recon-  attractor or must be performed by triai8) if the time series
struction of the attractor, ¥—0, C,(¢€) varies as a power of g noisy, we cannot choose too small a cuteff thus lim-

and

N(N—1)

NN ==

={total number of pairs

€, the exponent being the correlation dimensfiy2], iting the efficacy of the method. For these reasons most re-
5 searchers continue to prefer the naive algorithm, which com-
C(e)xe 2. (5  putes all distances.

) ) , In [11] it is suggested to perform two separate computa-
Having N points available, we compute the sample corre-jgns: the first with the whole set dfi points and a small
lation integralCrn(N, €), usually by chosing a suitable num- ¢ off distancee, ; the second to estimate the correlation

bgr of e values and buiIdi.ng the cgmulative h.istogram Ofintegral fore> e, using a lower number of pointg.g.,N)
distances between all pairs of poin&y(N,e€) increases 44 computing all distances. The whole correlation integral
monotonically from 20(N—1) up to the saturation value 1. ig then obtained by joining the two portions.

The error with respect to the “true” correlation integral in-  \y/e point out that using cutoff methods, for a giviinthe
creases ag decreases anth increases, since the statistics accuracy of the various valug, (N, €) de(,:reases as de-

worsen[i.e., Nn(N, €) becomes too loy creases anth increases, just as in the standard method. This
Since with a limited data set we cannot explore very smallyso happens in each correlation integral portion obtained

scales, the usual procedure searches for a range of intermgiip, the two-computation scheme suggesteilit.
diate e valuese’ <e<¢€" (scaling region for which relation

(5) approximately holds. l0o€(N,€) versus log is plotted
for increasing embeddindgg.g., from 2 up tan,,,) and the
slope (smoothed local derivatiyein the scaling region is A. The proposed approach
fitted. If the slope increases with up to a saturation value
(plateay, this value is assumed as the estimation of the tru€,s 4 pinomial 6,p) random variable witm=A;(N) (num-

D, [12]. Various criteria can be employed to extract the besber of trialg an’d p=C,(€) (probability that the distance
D, estimate and its degree of reliability from the log-log plot between a randomly cﬁosen pair is less tanwe obtain,

Ill. THE ADAPTIVE BOX-ASSISTED ALGORITHM

Supposing we can consider, for eactand m, NV;,(N,€)

[13,14. ; :
The scaling behavior disappears at short values oiv- after A trials, the estimatg(n) of p,
ing to the poor statistics and to the noise that may affect the NN, €)
data, and at high valuésaturation regionowing to the edge p(nN)=C(N,e)= m—’, (6)
effects, i.e., the effects of the finite size and global shape of N(N)

the attractor. The pattern of I&g,(e) versus loge is some- i
times more involved, owing, for example, to the presence ofVith an actual errodp=[p(n) —p| and a standard error
multiple scaling regions.

When m increases interpoint distances also increase. So p(1—p)\¥?
€' increases, owing to depopulation at the shortest scales, Up:(T) ' @)
and €” decreases, since the boundary effects become more
important, .resulting in a shorter gnd s_horter _scaljng region  gince in order to estimat®, we plot logC,(€) versus
[15,1@_. Th|s_ also accounts for failure iB, estimation for loge, and since for smalkp
high-dimensional systen47,18|.

The condition of having a quite well-defined scaling re-
gion of sufficient width(e.g., one or half a decade on the
logarithmic scalgyields the minimum number of points,
which increases with th®, value itself, needed for a reli-
able computatiofil9]. To improve the statistics at the small- we see that the error on I@&g,(€) is the relative error on
est scales we are forced to use a high number of points, b@,(e).
in this way computation time increases and for the higleest ~ Equation(7) shows that with the standard methods, which
values we process more data than necessary. use a constant number of trials, the relative standard error

Ap
Iog(ptAp)zlogpi?. 8
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o,/p increases ap decreases, i.e., as we move toward Xip=Xi+@w-1ur 1=, ... Npax, v=1,...m, (13
smallere values and higher embeddings. On the contrary, we ) ) ) )
must have where the integen (=1) gives the time delay. Distances are
computed using the maximum norm.
1-p 1. The mesh of boxes
n=— 9
ep As in [5], we use amrm’-dimensional mesh of boxes and

linked lists for a fast search of neighboring points. Typically
to keepo,/p less than or equal to a prefixed valsgasp  m’=2; in some circumstances, especiallynif, ., is very
varies. Observing that (1p)/p<1/p, setting high, a greater valué.g.,m’ =3) can speed up the compu-
tation but causes the loss 6f, for m<m’ and an increased
1 demand on memory. For this work we chasé=2.
Mh:_zi (10 The two-dimensiona(2D) subspace is divided into non-
€ overlapped boxes of edgg,,,; there aren,= 1/¢,;,, boxes
along each side, anl =n2=a?""Y is the total number of
Boxes. The array, of size M, corresponds to the mesh of
boxes, and is used to build in the ardal the linked lists of
indices of points falling into the same box. &, is very
small, we can save memory by employing the wrappiig
At the beginning, all the elements of bohandLL are
set to zero. During the procedure, each nhonempty location of
B points to the head of the corresponding linked list.

and getting back to the original quantities, we see that th
above condition is satisfied if

N(N)Cn(€) = EWn(N,€e))=const=Ny,, (1)

i.e., if the number of trials is inversely proportional @,,
so that the expected number of successgsis kept con-
stant. SinceV;(N)=N?/2, Eq.(11) yields

N 2-/\/th 1/2
_(Cm(e)) '

2. Computing and histogramming distances at the kth step

(12 The algorithm comprisek steps. At the generikth step
(k=0, ... L—1) the cutoff distance ig,=a X and the lo-

. L _cality of the search is expressed by
showing how the number of points is expected to vary with

Cn(e) if we require thatE(NV,(N,€))=M,. Since the €
variation of C,(€) with € is very high[see Eq(5)], it fol- pk=CeiI( ) (14
lows thatN\;(N) or equivalentlyN must vary greatly in order €min

to satisfy Eqs(11) and(12). where Ceilk) denotes the smallest integer greater than or

_On the basis of the above considerations, we propose &y tox. In the first step k=0 ande,=1) no distances are
different procedure, in which eadB(€) element is com-  jiscarded.

puted with a different number of points in order to keep g, every new poink
Nm(N,€) approximately equal taV,, ensuring good statis-
tics for eache andm. In this way we obtain a quite uniform
relative precision for all theC,(¢) values. TheMN;, value
determines the accuracy level.

i, picked out randomly among the
set ofN,ax pPOINts, the proper location & is addressed with

the integer parts of the first two coordinates. The linked lists
corresponding to the boxes in the square of side, ¢21)?,
centered around the box containing pdinare sequentially
scanned; the pairs formed by the current point and previous
B. Algorithm description points in these linked lists are considered as candidate pairs

This procedure can be implemented in a very efficient/Ve) for distance computation, and a subset of them has
manner using an adaptive box-assisted algorithm with &istance<e in the R® subspacésee Fig. 1
number of decreasing cutoff distances, which coincide with FOr these points the distance$” less thane, (actually
the considerect values. In the following we describe the 1SS thane/em, owing to preprocessing of point coordi-
algorithm, whose pseudocode is reported in the Appendixl@tes are recursively computed for the various embeddings
We chooseN .= the maximum number of available points; a_nd binned in the usual way, simultaneously updating the
Myow= the maximum embedding dimensiody,,= the h!stograms of d|stgnce$H(m,I),I =k, . = ’L._l]' Pre-
threshold value for the number of paifé,(N,e) [see Eq. CiSely,H(m,l) contains the number of pairs with
(11)]; and the sequence aof values ase;=a', 1<a<2, Y .
1=0,...L—1. enp,=a &Y is the minimum value ok. L —gm<? (15)
gives the number of length scales considednd L must €min €min
be suitably chosen in order to obtain a good resolution and a o o o
reasonablee,;, value. To allow maximum generality, we Then the current point is inserted at the beginning of its list
also accept noninteger values af resulting in noninteger and the location o8B is updated.
€l emin ratios. The number of correlation integral values to
compute isng=L(Mpa—1)-

Point coordinates are normalized to the unit interval and Every N,.s; points we compute the cumulative histograms
preprocessed by dividing them lay,;,. To save memory we [H.(m,l),I=k, ... ,L—1] and we test the various elements
use the time series values directly, with the correspondenceorresponding to not-yet-computed correlation integral val-

3. Testing phase
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FIG. 1. Example withe=2¢,,, i.e.,p=2 and 2+1=5. The
small boxes have side,;,; points in the dashed square of side 4
are the close pointgnaximum norm to pointx in the 2D subspace;
points in the square of 85 boxes form with poink the candidate
pairs.

ues to find the ones that have reachedAhgthreshold. For
such values the correlation integral is computed as

He(m,l)

CmD= Ny (16)
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value by dividing it bya. Correspondingly, the square of
boxes (Fig. 1) for searching for the neighboring points is
reduced. The columns dfl from O to k—1, which corre-
spond to distances greater than the curigntare updated
no further.

Let Ny be the number of points processed when all the
values in thekth column ofC have been computed. For all
the C(m,l) values computed during stdp we haveN,_;
<Nm=N.

As the algorithm proceeds, the number of points in-
creases, but the search becomes more local and therefore
faster. The box-assisted approach ensures an efficient search
of neighboring points at each step.

5. Termination phase

The algorithm proceeds toward the smallestlue (e
and terminates when all values have been computed with
the required statistics\;,, or when all points have been
processed. In this latter case the remainthgalues are in
any case computed with the available statistics, and the cor-
responding elements im, are set to 1.

The D, can then be estimated using the same techniques
that apply with the standard procediyreanual or automatic
determination of the scaling region, best fitting of slope in
the scaling region, test of reliability, efcWe can choose to
use all the availabl€ values, or only those computed that
fulfill the threshold criterion.

N, being the number of points processed so far; this value

is saved inny(m,l). We note thatH (m,l) contains the
quantity MN,(Np,,e) and C(m,l) corresponds to

Cm(Nm,i,€)-
The H.(m,l) values grow more slowly am and| in-

crease, according to the correlation integral values. Henc

the C(m,l) values are computed in decreasing order.

In order to limit the testing overhead, various strategiesr

accordance with Eq.12), we find it useful to increashl;
as 1/Cuin)®, Cmin being the smalles€(m,l) computed so
far, ands<3;

4. Cutoff distance reduction

When all theC(m,k) for the currentk are computed, we
begin the next stepk¢—k+1), reducing the current cutoff

C. ABA vs BA and BA-2 algorithms

We point out that the ABA algorithm is similar in some
aspects to the box-assisté8lA) algorithm presented iff],

%ut there are important differences, as shown in Table I.

For comparison we also implemented, using the BA algo-
ithm, a two-computation schem®A-2 algorithm) derived
* from the idea proposed ii1]. In the first phase we process
Ny (<N) points withep=1 (no distances are discardeahd
we find the minimume; for the second phase as the mini-
mum e value for which allC,(€) have been evaluated. In
the second phase we process the whole point set with a cut-
off distancee; = ¢, (of course, a largeg;, improves accuracy
but increases computation timé& his procedure assures that
the whole correlation integral is obtained.

TABLE I. Comparison of the proposed algorithiABA) with the algorithm presented irb] (BA); m’
=2 and the maximum norm is used. Corr. Int. is the correlation integral.

ABA algorithm

BA algorithm

L cutoff distances

decreasing from 1 up te,
coordinates of points are divided lay,,
all Corr. Int. values are computed
at thekth step, candidate pairs are searched
in the[2 Ceil(e, / €min) +1]? neighboring boxes;
the search becomes more localkaimcreases
N is variable
Nn(N,€) is approximately constant

one cutoff distance_)

coordinates of points are divided fay
only Corr. Int. values dste. are computed
candidate pairs are searched
in the 1)? neighboring boxes

N is fixed
Nm(N,€) is variable
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D. ABA algorithm and the fixed-mass approach Wior= 2N masct n§+4(mmax_ 1)L, (17)

In the ABA algorithm we require the number of neighbor- ) )
ing pairsV;,(N, ) to remain approximately constant at the which is roughly twice that of the standard algorithm and
various scales and at the various embedding dimension&P0ut the same as the BA algorithm. o
Therefore the ABA algorithm presents some analogies with A precise computational analysis of the algorithm is quite

. . involved, since the computational complexity depends on the
the fixed-mass approa¢l1], proposed for the computation o4\ i "Coriod “on they, value itself, and on a number

of generalized fractal dimensions, and based on the scalingr :

of the sizee (averaged over a set of reference poirdsa othe_r parametersN ax’%ax’Mh’L’a)' A fairly _rough
iahborhood taini int functi f the total evaluation of the computational cost can be done in terms of

neighborhood containing points, as a function of the tota the ratio between the number of pairs examiteandidate

number of points. Indeed, both methods rely on the relationbairs) A, and the total number of pait¥;. At the kth step

ship between the number of poirfiand the neighborhood ;g ratio is the ratio between the neighboring boxes of each
size €, when the number of neighboring poinisr pairs in point and the total number of boxes
the case oD,) is kept constant. However, in the ABA al-

gorithm the independent variabledsand for eacke we find

the minimum number of pointsl needed to havdy;, close Rg=min
pairs. In the fixed-mass method the independent variable is

N, and we find the average distancéo theK nearest neigh- 114 incremental number of pairs resulting in ki step,
bor asN varies. Also, the implementation is different, since \yhen the number of points increases frofp_; to N, , is
the ABA algorithm is a correlation integral algorithm, al- (N_,=0)

though box assisted and modified to manage a variable num-

(2pt 1)2'1).

M (18

ber of points, whereas the fixed-mass algorithm [§ aear- (Ne= N, ) (Ne—N,_;—1)
est neighbor algorithm. AN, = - 5 -
E. Using the algorithm +(Ng=Ni_1)Ng_4, k=0,...L-1. (19

The proposed algorithm requires two input pe}ram(.atersWe can therefore express the total number of candidate pairs
namely, N and Ay, (the minimum number of pairs with as

distance less thas), whereas the standard methods require

N only. The ABA algorithm must be used with, <M L-1
(Nphay- It yields results that are essentially identical to those N,= 2 RAN, (20)
of the standard method with=N,,, but it saves comput- k=0

ing time since for eacle value it uses only the minimum ) ) )
number of points needed to achieve the required statistic&nd the ratio between the number of candidate pairs and the
The computation time and the precision of the results obvi{otal number of pairs is
ously increase withA, (typical values are X10°-1

X 107).

The algorithm makes it possible to run trials with a very N, IZO RiIAN
high number of pointgi.e., Ny,=1x10P), which cannot be < - ,
carried out with the standard method since computation time M(NL—1)  N—g(Np 3= 1)72
would be too high. In this way we can reach lower scales

resulting in wider and flatter scaling regions. i £ th duction in th tational -,
If N (Nmax-&min)>Nip all C elements fulfill the thresh-  €ation of the reduction in the computational cost. e
,,max . ) values can be approximately obtained from ELR),
old criterion, not all the available points are used, and results

depend only on\V;, and not onN,,.,. Otherwise, at the
smallest scales the whole set of points is used, possibly with- Nk:(
out reaching the thresholdfy;, for someH.(m,l) values.

If Vin=N:(Nna0 the algorithm behaves like the standard
one and allC elements are computed using the whole set ofSo theA N, quantities(and therefore\V;) are proportional to
points. It is obviously useless to employ the algorithm in thisA;, and increase if the:mmax(ek) values decreasg.e., if the
way since it performs worse than the standard method owing, is highe. If the total number of points is insufficient to

to the overhead arising from managing linked lists and testreach (N, ..6) =N for k>k’, the summation in Eq.

L-1

(21)

This ratio, unity in the standard algorithm, gives us an indi-

2N 1/2
th ) 22

Con, (€0

ing the cumulative histogram. (20) reduces to the first’ terms.
It is interesting to consider also the BA-2 algorithm, for
F. Memory demand and computational cost which the ratio between the number of candidate pairs and

The proposed algorithm requires, like the BA algorithm the total number of pairs can be expressed as a particular
[5], an additional storage o, words for the linked lists ¢@Se of Eq(21) with L=2,
and of n? words for the arrayB. Furthermore, fima,— 1)L
words are needed for the array . The total memory de- Ne _ RiAN;+ANG
mand (in words is N(N) N(N—1)/2

(23
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TABLE Il. Comparison of results obtained with the proposed algoriABA ) and with the standard one.
In all trials a=1.055,L=128, andm,,,,=14. #el[ <L (m,,,,—1)=1664] denotes the number of evaluated
values of the correlation integral. Numbers in square brackets denote powers of 10.

System N max Algorithm N Tepu (9 el erg, €lMmax
Lorenz 200000 std 34081 1664 Ref. Ref.
10000 std 89 1664 3+2] 0.16
50 000 std 2283 1664 1.22] 8.1 —-2]
200000 ABA 12] 6 1664 4.7-2] 0.18
200000 ABA 13] 15 1664 2.p-2] 9.3 -2]
200 000 ABA 14] 43 1664 6.7-3] 3.4 -2]
200 000 ABA 15] 116 1664 3.p-3] 1.9-2]
200 000 ABA 16] 403 1664 1.7-3] 9.9 -3]
200 000 ABA 17] 1752 1664 78-4] 7.93-3]
2-Lorenz 200000 std 33443 1589 Ref. Ref.
10000 std 84 1322 0.12 1.14
50 000 std 2107 1527 4.2 2] 1.2
200000 ABA 12] 63 1589 2.8—-2] 0.15
200000 ABA 13] 124 1589 1.1-2] 8.1—-2]
200 000 ABA 14] 309 1589 4.p-3] 2. -2]
200 000 ABA 15] 839 1589 2.p-3] 1.9 -2]
200 000 ABA 16] 2332 1589 10-3] 1.90-2]
200 000 ABA 17] 6408 1589 5.6-4] 7.0-3]
200000 ABA 18] 14584 1589 2/4-4] 3.0-3]
2000000 ABA 17] 86 966 1664
3-torus 200 000 std 32487 1603 Ref. Ref.
10000 std 83 1456 0.10 0.93
50 000 std 2097 1575 4.4 2] 0.9
200000 ABA 12] 38 1603 2.4-2] 0.12
200 000 ABA 13] 46 1603 1.0-2] 57 -2]
200 000 ABA 14] 79 1603 3.7-3] 2.1-2]
200 000 ABA 15] 186 1603 1.p-3] 1.9 -2]
200000 ABA 16] 588 1603 8.1—4] 6.0 —3]
200000 ABA 17] 2200 1603 2p-4] 1.9-3]

Since the ABA algorithm uses the minimum number of N=200000 points, whose results are assumed as reference
points needed to obtain the required accuracy, it is expecteghlues.
The results are presented in Table Il. #el is the number
an approximation of the ABA algorithm with only one cutoff (<n,) of correlation integral values evaluated in each trial.
For each trial we consider the CPU tirtia secondsneeded

for the computation, the average absolute errof,eand the
maximum absolute error gy, between the #el values of
logC(m,e) and the reference values. We see that the ABA
algorithm is considerably faster than the standard one. The

to outperform the BA-2 algorithm, which can be viewed as

distance reduction.

IV. EXPERIMENT RESULTS

To test the algorithm, we performed some trials using

time series from known attractors. We chase 1.055 and

L=128, i.e., €,;;=0.001, which give 128 points uniformly

distributed over three decades. We fixagl,,=14. All trials

were carried out on ®IGITAL personal workstation Alpha

AU 433 (clock speed 433 MHz
We considered the following time serig$) The x vari-
able from the Lorenz system, with parameters-10, R

=28,b=28/3 (D,=2.06).(ii) A time series obtained by add-
ing two time series X variable from two different Lorenz

systems(2-Lorenz in Table Ii: the first with 0=10, R
=28, b=8/3 and the second witth=40, R=16, b=4. The
resulting time series is expected to gille=4.12. (i) A

error reduces ad\;, increases, eventually becoming negli-
gible. #el increases, as expected, with the number of points,
and, for a giverN,,,,, the ABA algorithm allows the com-
putation of the same number & values as the standard
algorithm with an accuracy that depends b, .

The 2-Lorenz time series is analyzed in more detail in
Fig. 2, where some plots of the derivative of |g0,,(€) vs
logype are compared. In this cadé=50 000 is the minimum
number of points needed to obtain a quite well-defined scal-
ing region. However, the scaling range is short and there are
high statistical errors at the smallest scales. The situation is
three-torus obtained by summing up three sinusoids witimuch better withN=200 000, but the standard algorithm
mutually incommensurable frequencies. In all cases we perrequires abol® h of CPUtime. The ABA algorithm gives us
formed a reference trial with the standard procedure anthe same results within a negligible error in a fraction of the
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FIG. 2. Examples of plots of the derivative of lgG(m,e) vs log,ge for the 2-Lorenz time seriesn(=2,14 step 2 (a) standard
algorithm, N=50 000, T¢p,=2107 s;(b) standard algorithmN= 200 000, Tp, =33 443 s;(c) ABA algorithm, N=200 000, V;,=1
X 107, Tepy= 6408 s;(d) ABA algorithm, N=2 000 000,N;,=1X 10", Tcp,=86 966 s.

CPU time. Figure @) shows an example of use of the algo- a consequence, we must increase the cutoff distapde
rithm with a very high number of points: the scaling region phase 2.
remains flat up to loge=—2.6. The CPU time is about 25 Although the BA-2 algorithm greatly reduces computing
h, but in this case the standard algorithm would require 38ime, giving quite good results, we see that the ABA algo-
days. rithm in general performs better. In fact, comparing trials
Table 1l shows some results obtained with the BA-2 al-with similar CPU time(see Tables Il and Il and Fig. 3,
gorithm. Ny is the subset of points used in phase 1; as exwhich refers to the 2-Lorenz systgnwe see that the errors
pected the number & elements that we can compute with a obtained with the ABA algorithm are lower. This occurs
fixed Ny decreases if the system complexity increases and, amth for average errors and, to a larger extent, for maximum

TABLE Ill. Results obtained with the BA-2 algorithm. In all triaés= 1.055,L =128, andm,,,,=14. Ng
is the number of points used in phaseel;is the cutoff distance in phase 2. Numbers in square brackets
denote powers of 10.

System N No € Tepy (9 #el erg, el nax
Lorenz 200 000 1000 0.014 136 1664 [~3B] 0.11
200000 5000 0.003 37 1664 1-22] 0.13
200000 20000 0.002 467 1664 B-23] 1.9-2]
2-Lorenz 200000 1000 0.070 1698 1589 [5:8] 0.17
200000 5000 0.040 626 1589 p43] 0.10
200 000 20000 0.014 502 1589 [-42] 0.41
3-torus 200000 1000 0.040 370 1603 [=&] 0.28
200 000 5000 0.018 102 1603 B-23] 0.10

200000 20000 0.006 433 1603 p-02] 0.42
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FIG. 3. Plots of the derivative of lggC(m, €) vs log,ee for the
2-Lorenz time series N=200000, m=2,14 step 2 (a) ABA
algorithm, N =1X10°% Tepy=839 s; (b) BA-2 algorithm,
Np=5000, €;=0.040, Tepy=626 s; (c) BA-2 algorithm,
Np=20000, €,=0.014, Tcp,=502 s.

errors. In particular, the ABA algorithm gives a more uni-

form accuracy and wider and flatter scaling regitsee Fig.
3).
Furthermore, the ABA algorithm is fully adaptive,

begin procedure corrint(X, Nmax, C)
input time series X
€min = a= (-1
preprocessing of X (#; ¢ ;Z=fmin) /e, ;)

set elements of B, LL, n, to zero
Nel = L(mmax - ]-)

k=0

e=1
p:Ceil(E;n)
ent =0

do while (n, > 0 & ent < Npax)
i = rand (1, Npax)

ent =cnt + 1
il = int(z)
i2 = int(z;5)

J1l = max(il — p,0)
J1h = min(il + p, ny)
J21 = max(i2 — p,0)
J2h = min(i2 + p, ns)
for j1 = 11l,ilh
for j2 =21, :2h
j=B(j1,;j2)
do while(j # 0)
if (j < i—h) then
dist(x;,x;,¢, H)
endif
j= LL()
enddo
endfor
endfor
LL(i) = B(i1,42)
B(il,i2) = i
if (cnt mod Nies; = 0) check(ent, H,C,ng,np, k, €)
enddo
if (n.; > 0) check(ent, H,C, ney, ny, k, €)
if (ner > 0) compute the remaining elements of C
end

FIG. 4. The main procedureorR_INT.

V. CONCLUSIONS

The proposed algorithm compares favorably with the
standard procedure. With a suitable choice of the parameter
Nin, we achieve a substantial reduction in computation time,
obtaining essentially the same correlation integral values as
in the standard procedure. The algorithm also outperforms
the two-computation scheme outlined|itd].

A major feature of the algorithm is that it is fully adaptive
to the system under consideration, since it does not require
any a priori knowledge. Moreover, for each value it uses
the minimum number of points necessary to obtain the re-
quired statistics. So, for a given accuracy, the computation
time increases with the complexity of the systésee, for
example, the Lorenz and 2-Lorenz time series in Table I
Varying NV;,, we can choose the degree of accuracy of re-
sults and the related computation time. For intermediate val-
ues ofN and using quite a low thresholil;,, we can reach
very fast processing.

Obviously, if we lower\;, the execution becomes faster,

whereas with the BA-2 algorithm the proper choice butthe accuracy of results is reduced. In some circumstances

of Ny requires somea priori information about the
system under investigation.

a trial with a very low value of\;, may be useful for ob-
taining a fairly rough but very fast estimation of the correla-
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begin procedure dist(x,y, ¢, H) begin procedure check(ent, H, C,ng,np, k, €)
for m = 2, muyax M:MM
computes d(™ /* compute the cumulative histogram H. */
if (4™ > e;n) exit copy H in H,
if (d(m) < 1) then for m = 2, mpax
l=L—-1 fori=1L-2k —1
else He(m,l) = He(m,l) + He(m, I+ 1)
[ = int(—log,d™) + L —1 endfor
endif endfor
H(m,l) = H(m,l) +1 /* test for He.(m,l) > Ny, */
endfor for m = 2, myax
end fori=L—-1,k -1

if (np(m,1) =0 & H.(m,l) > Nyp) then
C(m,l) = H.(m, 1)/ N,
np(m,l) = ent
Nel = Nel — 1

FIG. 5. Distance computation and histogram updating.

tion integral (and therefore of the correlation dimensipn
which can be refined later, if necessary.

The algorithm is suitable for carrying out trials with a endif
very high number of pointéin our trials we used up to 15 endfor
million points). Of course, even if the proposed method al- efdfor . .
lows the efficient computation of correlation integrals, it / check if ¢ can be reduced */
does not solve all the problems connected to the estimation if (all C(;, k) values have been computed) then
of the correlation dimension, especially in the case of k=k+1
medium-high dimensioné.g.,D,=5). These intrinsic dif- e=¢/a
ficulties are mainly due to a very high depopulation at small p = Ceil(=5-)

scales and higher embeddings, so that a huge number of  endif
points is needed to achieve sufficient statistics. Such a huge end

number of points is not normally available in experimental FIG. 6. The procedureHECK computes the correlation integral

situations. -
. . . €elements that satisfy the thresh .
In order to increase the speed of the algorithm, especially b oty

when dealing with “difficult” time series, we can slightly

lower the thresholdV;, for the smallesk values. and updates the histogrartf§g. 5), andcHeCk, which com-
With a few modifications, i.e., introducing a convergenceputes the correlation integral elements that fulfill the thresh-

test for each correlation integral value, the proposed methodld Ay, and reduces the cutoff distance if appropriéfey.

can be used as a tool to perform experimental investigatiof). e andp denote the current values ef andpy.

of the convergence behavior of the correlation integral for a The arrays used ar&X(1:N,.) Wwith the time series,

given system, particularly when a very high number ofH(2:m,,,0:L—1) for the histogram,C(2:my,,,0:.L—1)

points is available. The algorithm can easily be adapted fofor the correlation integralB(0:n,—1,0:n,—1) with the

the Computathn of the |nd|V|dUa..| correlation |ntegr.a| with mesh of boxesLL(l:Nmax) where the linked lists are bu"t,

respect to a given reference point, and therefore it can bgng Np(2:Mpa0:L—1) to check if theC elements have

used to compute the pointwise dimension and gherder  peen computed and to store the number of points at which

generalized dimensions. they are computed. Moreover, the procedoreck uses the

local array Hy(2:my,,,0:L—1) for the cumulative histo-

APPENDIX: PSEUDOCODE OF THE ALGORITHM gram.

The computer program, IFORTRAN language, is available

The algorithm comprises the main proced@®RR_INT to those who request it,

(Fig. 4) and the proceduresisT, which computes distances
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